skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nelson, Dylan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Galaxy clusters are unique laboratories for studying astrophysical processes and their impact on halo gas kinematics. Despite their importance, the full complexity of gas motion within and around these clusters remains poorly known. This paper is part of a series presenting the first results from the new TNG-Cluster simulation, a suite comprising 352 high-mass galaxy clusters including the full cosmological context, mergers and accretion, baryonic processes and feedback, and magnetic fields. Studying the dynamics and coherence of gas flows, we find that gas motions in galaxy cluster cores and intermediate regions are largely balanced between inflows and outflows, exhibiting a Gaussian distribution centered at zero velocity. In the outskirts, even the net velocity distribution becomes asymmetric, featuring a double peak where the second peak reflects cosmic accretion. Across all cluster regions, the resulting net flow distribution reveals complex gas dynamics. These are strongly correlated with halo properties: at a given total cluster mass, unrelaxed, late-forming halos with fewer massive black holes and lower accretion rates exhibit a more dynamic behavior. Our analysis shows no clear relationship between line-of-sight and radial gas velocities, suggesting that line-of-sight velocity alone is insufficient to distinguish between inflowing and outflowing gas. Additional properties, such as temperature, can help break this degeneracy. A velocity structure function (VSF) analysis indicates more coherent gas motion in the outskirts and more disturbed kinematics toward halo centers. In all cluster regions, the VSF shows a slope close to the theoretical models of Kolmogorov (∼1/3), except within 50 kpc of the cluster centers, where the slope is significantly steeper. The outcome of TNG-Cluster broadly aligns with observations of the VSF of multiphase gas across different scales in galaxy clusters, ranging from ∼1 kpc to megaparsec scales. 
    more » « less
  2. ABSTRACT The velocity dispersion of globular clusters (GCs) around ultra-diffuse galaxies (UDGs) in the Virgo cluster spans a wide range, including cases where GC kinematics suggest haloes as massive as (or even more massive than) that of the Milky Way around these faint dwarfs. We analyse the catalogues of GCs derived in post-processing from the TNG50 cosmological simulation to study the GC system kinematics and abundance of simulated UDGs in galaxy groups and clusters. UDGs in this simulation reside exclusively in dwarf-mass haloes with M200 ≲ 1011.2 M⊙. When considering only GCs gravitationally bound to simulated UDGs, we find GCs properties that overlap well with several observational measurements for UDGs. In particular, no bias towards overly massive haloes is inferred from the study of bound GCs, confirming that GCs are good tracers of UDG halo mass. However, we find that contamination by intracluster GCs may, in some cases, substantially increase velocity dispersion estimates when performing projected mock observations of our sample. We caution that targets with less than 10 GC tracers are particularly prone to severe uncertainties. Measuring the stellar kinematics of the host galaxy should help confirm the unusually massive haloes suggested by GC kinematics around some UDGs. 
    more » « less
  3. Abstract We present rest-frame optical spectra from Keck/MOSFIRE and Keck/NIRES of 16 candidate ultramassive galaxies targeted as part of the Massive Ancient Galaxies atz> 3 Near-Infrared Survey (MAGAZ3NE). These candidates were selected to have photometric redshifts 3 ≲zphot<4, photometric stellar masses log ( M / M ) > 11.7, and well-sampled photometric spectral energy distributions (SEDs) from the UltraVISTA and VIDEO surveys. In contrast to previous spectroscopic observations of blue star-forming and poststarburst ultramassive galaxies, candidates in this sample have very red SEDs implying significant dust attenuation, old stellar ages, and/or active galactic nuclei (AGN). Of these galaxies, eight are revealed to be heavily dust-obscured 2.0 <z< 2.7 galaxies with strong emission lines, some showing broad features indicative of AGN, three are Type I AGN hosts atz> 3, one is az∼ 1.2 dusty galaxy, and four galaxies do not have a confirmed spectroscopic redshift. In fact, none of the sample has ∣zspec−zphot∣ < 0.5, suggesting difficulties for photometric redshift programs in fitting similarly red SEDs. The prevalence of these red interloper galaxies suggests that the number densities of high-mass galaxies are overestimated atz≳ 3 in large photometric surveys, helping to resolve the “impossibly early galaxy problem” and leading to much better agreement with cosmological galaxy simulations. A more complete spectroscopic survey of ultramassive galaxies is required to pin down the uncertainties on their number densities in the early Universe. 
    more » « less
  4. ABSTRACT The flow of gas into and out of galaxies leaves traces in the circumgalactic medium which can then be studied using absorption lines towards background quasars. We analyse 27 $${{\log [N({\textrm {H}}\, {\small {I}})/\rm {cm}^{-2}]}} > 18.0$$ H i absorbers at z = 0.2 to 1.4 from the MUSE-ALMA Haloes survey with at least one galaxy counterpart within a line of sight velocity of ±500 km s−1. We perform 3D kinematic forward modelling of these associated galaxies to examine the flow of dense, neutral gas in the circumgalactic medium. From the VLT/MUSE, HST broad-band imaging, and VLT/UVES and Keck/HIRES high-resolution UV quasar spectroscopy observations, we compare the impact parameters, star-formation rates, and stellar masses of the associated galaxies with the absorber properties. We find marginal evidence for a bimodal distribution in azimuthal angles for strong H i absorbers, similar to previous studies of the Mg ii and O vi absorption lines. There is no clear metallicity dependence on azimuthal angle, and we suggest a larger sample of absorbers is required to fully test the relationship predicted by cosmological hydrodynamical simulations. A case-by-case study of the absorbers reveals that ten per cent of absorbers are consistent with gas accretion, up to 30 per cent trace outflows, and the remainder trace gas in the galaxy disc, the intragroup medium, and low-mass galaxies below the MUSE detection limit. Our results highlight that the baryon cycle directly affects the dense neutral gas required for star-formation and plays a critical role in galaxy evolution. 
    more » « less
  5. Abstract The circumgalactic medium (CGM) contains information on gas flows around galaxies, such as accretion and supernova-driven winds, which are difficult to constrain from observations alone. Here, we use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to study the properties and kinematics of the CGM around star-forming galaxies in 10 11.5 –10 12 M ⊙ halos at z ≃ 1 using mock Mg ii absorption lines, which we generate by postprocessing halos to account for photoionization in the presence of a UV background. We find that the Mg ii gas is a very good tracer of the cold CGM, which is accreting inward at inflow velocities of up to 50 km s −1 . For sight lines aligned with the galaxy’s major axis, we find that Mg ii absorption lines are kinematically shifted due to the cold CGM’s significant corotation at speeds up to 50% of the virial velocity for impact parameters up to 60 kpc. We compare mock Mg ii spectra to observations from the MusE GAs FLow and Wind (MEGAFLOW) survey of strong Mg ii absorbers (EW 2796 Å 0 > 0.5 Å). After matching the equivalent-width (EW) selection, we find that the mock Mg ii spectra reflect the diversity of observed kinematics and EWs from MEGAFLOW, even though the sight lines probe a very small fraction of the CGM. Mg ii absorption in higher-mass halos is stronger and broader than in lower-mass halos but has qualitatively similar kinematics. The median-specific angular momentum of the Mg ii CGM gas in TNG50 is very similar to that of the entire CGM and only differs from non-CGM components of the halo by normalization factors of ≲1 dex. 
    more » « less
  6. Abstract In a novel approach employing implicit likelihood inference (ILI), also known as likelihood-free inference, we calibrate the parameters of cosmological hydrodynamic simulations against observations, which has previously been unfeasible due to the high computational cost of these simulations. For computational efficiency, we train neural networks as emulators on ∼1000 cosmological simulations from the CAMELS project to estimate simulated observables, taking as input the cosmological and astrophysical parameters, and use these emulators as surrogates for the cosmological simulations. Using the cosmic star formation rate density (SFRD) and, separately, the stellar mass functions (SMFs) at different redshifts, we perform ILI on selected cosmological and astrophysical parameters (Ωm8, stellar wind feedback, and kinetic black hole feedback) and obtain full six-dimensional posterior distributions. In the performance test, the ILI from the emulated SFRD (SMFs) can recover the target observables with a relative error of 0.17% (0.4%). We find that degeneracies exist between the parameters inferred from the emulated SFRD, confirmed with new full cosmological simulations. We also find that the SMFs can break the degeneracy in the SFRD, which indicates that the SMFs provide complementary constraints for the parameters. Further, we find that a parameter combination inferred from an observationally inferred SFRD reproduces the target observed SFRD very well, whereas, in the case of the SMFs, the inferred and observed SMFs show significant discrepancies that indicate potential limitations of the current galaxy formation modeling and calibration framework, and/or systematic differences and inconsistencies between observations of the SMFs. 
    more » « less
  7. ABSTRACT We use the magnetic-hydrodynamical simulation TNG50 to study the evolution of barred massive disc galaxies. Massive spiral galaxies are already present as early as z = 4, and bar formation takes place already at those early times. The bars grow longer and stronger as the host galaxies evolve, with the bar sizes increasing at a pace similar to that of the disc scalelengths. The bar fraction mildly evolves with redshift for galaxies with $$M_{*}\ge 10^{10}\rm M_{\odot }$$, being greater than $$\sim 40{{\ \rm per\ cent}}$$ at 0.5 < z < 3 and $$\sim 30{{\ \rm per\ cent}}$$ at z = 0. When bars larger than a given physical size ($$\ge 2\, \rm kpc$$) or the angular resolution limit of twice the I-band angular PSF FWHM of the HST are considered, the bar fraction dramatically decreases with increasing redshift, reconciling the theoretical predictions with observational data. We find that barred galaxies have an older stellar population, lower gas fractions, and star formation rates than unbarred galaxies. In most cases, the discs of barred galaxies assembled earlier and faster than the discs of unbarred galaxies. We also find that barred galaxies are typical in haloes with larger concentrations and smaller spin parameters than unbarred galaxies. Furthermore, the inner regions of barred galaxies are more baryon-dominated than those of unbarred galaxies but have comparable global stellar mass fractions. Our findings suggest that the bar population could be used as a potential tracer of the buildup of disc galaxies and their host haloes. With this paper, we release a catalogue of barred galaxies in TNG50 at six redshifts between z = 4 and 0. 
    more » « less
  8. Abstract The driving of turbulence in galaxies is deeply connected with the physics of feedback, star formation, outflows, accretion, and radial transport in disks. The velocity dispersion of gas in galaxies therefore offers a promising observational window into these processes. However, the relative importance of each of these mechanisms remains controversial. In this work we revisit the possibility that turbulence on galactic scales is driven by the direct impact of accreting gaseous material on the disk. We measure this effect in a disk-like star-forming galaxy in IllustrisTNG, using the high-resolution cosmological magnetohydrodynamical simulation TNG50. We employ Lagrangian tracer particles with a high time cadence of only a few million years to identify accretion and other events. The energies of particles are measured by stacking the events in bins of time around the event. The average effect of each event is measured by fitting explicit models for the kinetic and turbulent energies as a function of time. These measurements are corroborated by cross-correlating the turbulent energy with other time series and searching for signals of causality, i.e., asymmetries across zero time lag. We find that accretion contributes to the large-scale turbulent kinetic energy even if it does not dominate in this ∼5 × 109Mstellar mass galaxy. Extrapolating this finding to a range of galaxy masses, we find that there are regimes where energy from direct accretion may dominate the turbulent energy budget, particularly in disk outskirts, galaxies less massive than the Milky Way, and at redshift ∼2. 
    more » « less
  9. ABSTRACT The sensitivity of X-ray facilities and our ability to detect fainter active galactic nuclei (AGNs) will increase with the upcoming Athena mission and the AXIS and Lynx concept missions, thus improving our understanding of supermassive black holes (BHs) in a luminosity regime that can be dominated by X-ray binaries. We analyse the population of faint AGNs ($$L_{\rm x, 2{-}10 \, keV}\leqslant 10^{42}\, \rm erg\,s^{ -1}$$) in the Illustris, TNG100, EAGLE, and SIMBA cosmological simulations, and find that the properties of their host galaxies vary from one simulation to another. In Illustris and EAGLE, faint AGNs are powered by low-mass BHs located in low-mass star-forming galaxies. In TNG100 and SIMBA, they are mostly associated with more massive BHs in quenched massive galaxies. We model the X-ray binary (XRB) populations of the simulated galaxies, and find that AGNs often dominate the galaxy AGN + XRB hard X-ray luminosity at z > 2, while XRBs dominate in some simulations at z < 2. Whether the AGN or XRB emission dominates in star-forming and quenched galaxies depends on the simulations. These differences in simulations can be used to discriminate between galaxy formation models with future high-resolution X-ray observations. We compare the luminosity of simulated faint AGN host galaxies to observations of stacked galaxies from Chandra. Our comparison indicates that the simulations post-processed with our X-ray modelling tend to overestimate the AGN + XRB X-ray luminosity; luminosity that can be strongly affected by AGN obscuration. Some simulations reveal clear AGN trends as a function of stellar mass (e.g. galaxy luminosity drop in massive galaxies), which are not apparent in the observations. 
    more » « less